Resumen
Esta investigación tuvo por finalidad evaluar la efectividad de utilizar hormigones al vacío, fabricados con cemento nacional, con el fin de acelerar el descubrimiento de losa de edificios. Para tal efecto, se realizó un programa experimental para determinar y comparar el comportamiento que presentan los hormigones sometidos a vacío y normales preparados in situ con respecto a propiedades tales como resistencia, retracción hidráulica, densidad, absorción, desgaste, etc.

Se estudió la evolución de la resistencia a compresión de testigos extraídos del hormigón al vacío en función del concepto de madurez y se comparó con los resultados de resistencia a compresión de hormigón normal, obtenidos del ensayo de probetas cúbicas y cilíndricas estándar, así como también con los resultados de los ensayos a compresión de probetas de dimensiones iguales a los testigos de hormigón al vacío, sometidas a curado normalizado. Además, se presenta la aplicación de los resultados obtenidos en la predicción de los tiempos de desmolde o descubrimiento.

1. INTRODUCCION
El crecimiento económico que ha experimentado nuestro país en los últimos años ha producido un aumento en la velocidad de construcción, presentándose una serie de dificultades en la industria de la construcción en hormigón, principalmente en lo que se refiere a agrietamientos y deflexiones excesivas por descubrimiento prematuro, mala compactación de elementos estructurales, etc. Lo anterior, produce un importante impacto técnico, económico y de calidad en las obras.

Como una forma de minimizar el impacto de los problemas mencionados, durante los últimos años se ha generado un importante proceso de adaptación y transferencia de tecnologías que puedan cubrir la creciente demanda, sin perjudicar las propiedades y características de la construcción en hormigón. Además, también se requiere la aplicación de metodologías para la estimación del tiempo requerido para descubrir.

Una de las tecnologías que se ha estado aplicando en nuestro país en la construcción de losas y radieres, es la técnica de Hormigonado al Vacío. Consiste básicamente en sacar del hormigón, una vez que éste ha sido colocado y compactado, el agua de trabajabilidad, antes de que se produzca el fraguado. Lo anterior busca disminuir la razón W/C, lo cual mejora el comportamiento físico y mecánico de este material.

2. OBJETIVOS
Esta investigación tuvo por finalidad evaluar la efectividad de utilizar hormigones al vacío, fabricados con cemento nacional, con el fin de acelerar el descubrimiento de losa de edificios. Para tal efecto, se realizó un programa experimental para determinar y comparar el comportamiento que presentan los hormigones sometidos a vacío y normales preparados in situ.

Además, se presenta a modo ilustrativo la aplicación de los resultados obtenidos en la predicción de los tiempos de desmolde o descubrimiento, mediante el concepto de madurez.

3. ANTECEDENTES SOBRE LA TECNOLOGIA DEL HORMIGON AL VACIO
El procedimiento de Hormigonado al Vacío permite obtener hormigones de alta resistencia inicial, usando hormigón fresco con una alta razón W/C inicial. Su campo de aplicación principalmente ha sido la construcción de losas y pisos industriales en los que se requiere una alta resistencia al desgaste e impermeabilidad.

Debido a que el hormigón fresco contiene un sistema continuo de capilares llenos de agua, la formación de vacío en su superficie crea una presión diferencial negativa con respecto a la presión atmosférica entre el tapete y el sistema de capilares del hormigón fresco (Neville, 1996). Esta presión, que es del orden de los 8 a 10 ton/m² (Wenander, 1975), "estroja" el agua libre hacia la superficie y entonces se saca por medio de la manguera hacia la bomba y de ahí descargada hacia el exterior (ver Figura 1).

El proceso de vacío reduciría entre un 15% y un 25% la cantidad de agua inicialmente incorporada al hormigón, pudiendo de esta manera disminuir la razón W/C y mejorar así las propiedades mecánicas y físicas del hormigón, entre las que se cuentan (Neville, 1996): resistencia, impermeabilidad, retracción hidráulica y desgaste.

Por las ventajas anteriores, se estima que el desarrollo temprano de resistencia aportado por esta técnica podría ser útil en la reutilización más rápida de los moldajes y en la construcción del tipo tilt-up (prefabricados).
Figura 1. Sistema de Aplicación de Vacío (Wenader, 1975; Catálogo DYNAPAC)

Sin embargo, el proceso de hormigonado al vacío no sirve para todos los tipos de hormigón y/o elementos estructurales. En la Tabla 1 se presentan cuatro factores fundamentales a considerar antes de evaluar la conveniencia de la aplicación de esta técnica.

De estos factores, la finura del cemento es una variable que debe ser considerada y puede ser desventajosa para la aplicación de esta técnica en Chile. En efecto, los cementos nacionales son más finos que los utilizados actualmente en el extranjero (Cementos Portland Puzolánicos Chilenos: finura Blaine promedio 4000 cm2/gr; Cementos Portland EE.UU.: finura Blaine, entre 2800 y 3500 cm2/gr). Por tal motivo, eventualmente se podría ver afectada la efectividad de la aplicación de vacío por concentración de una alta cantidad de cemento y/o de partículas finas en las superficies de las losas.

4. PROGRAMA EXPERIMENTAL

Se estudió la evolución de la resistencia a compresión de testigos extraídos del hormigón al vacío en función del concepto de madurez y se comparó con los resultados de resistencia a compresión de probetas extraídas de hormigón fresco normal, cúbicas y cilíndricas estándar, como también con los resultados de los ensayos a compresión de probetas testigo de dimensiones iguales a los testigos de hormigón al vacío, pero sometidas a curado normalizado.

Los resultados a temprana edad se corrigieron y expresaron en función de la madurez del hormigón, para tomar en consideración el efecto de la temperatura en la evolución de la resistencia del hormigón con tratamiento al vacío. La madurez se estimó en función de los resultados del perfil de temperatura registrado con un equipo medidor.

<table>
<thead>
<tr>
<th>Tabla 1. Factores que afectan el Proceso de Vació (Pickard, 1975)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Contenido de Cemento</td>
</tr>
<tr>
<td>Contenido Inicial de Agua</td>
</tr>
<tr>
<td>Finura del Cemento</td>
</tr>
<tr>
<td>Aditivos</td>
</tr>
</tbody>
</table>

Revista Ingeniería de Construcción 63
de temperaturas marca Shinko, utilizado durante las primeras 24 horas de edad del hormigón; para edades posteriores se supuso que el hormigón alcanza su temperatura de equilibrio con el medio ambiente luego de 3 días de colocado y una variación lineal de temperatura entre 1 y 3 días.

Para la determinación de las propiedades mencionadas, se confeccionaron las siguientes probetas, según tipo de hormigón:

1ª Hormigón Normal (probetas de hormigón fresco sin tratamiento al vacío)

a) Ocho probetas cilíndricas de 15x30 cm, ensayándose una probeta a la edad de 16 horas, 2 probetas a las 27 horas, tres a los 7 días y dos probetas a la edad de 28 días.
b) Siete probetas cúbicas de 20x20 cm, ensayándose una probeta a la edad de 16 horas y dos probetas a las edades de 27 horas, 7 y 28 días.
c) 4 testigos de hormigón endurecido de 75x150 mm, de un molde cúbico de 200x200 mm., para ser ensayados 2 testigos a las edades de 7 y 28 días.

2ª Hormigón al Vacío

Se efectuó la extracción de los siguientes testigos de 75 mm de diámetro:
a) Dos testigos extraídos a las 9 horas, los cuales fueron ensayados a las edades de 16 y 27 horas.
b) Dos testigos extraídos a las 24 horas, los cuales fueron ensayados a la edad de 27 horas.
c) Cuatro testigos extraídos a los 7 y 28 días de edad del hormigón (dos por edad), para ser ensayados el mismo día de su fecha de ensayo.

Los resultados de los ensayos mencionados en los párrafos a), b) y c) permitirán evaluar el efecto de la temperatura en la evolución de resistencia a compresión a temprana y larga edad.

Por último, se debe señalar que por condiciones de diseño de la losa todos los testigos fueron extraídos del centro de la manta, ya que en los contornos existe una alta cantidad de acero que impide su extracción en los bordes sin cortar fierros. Sin embargo, según resultados informados por Videla (1997), no existiría una marcada diferencia en la resistencia a compresión de testigos extraídos del centro o borde de la manta.

5. ANÁLISIS DE RESULTADOS

a) Generalidades

Las relaciones resistencia - madurez han sido calculadas usando las fórmulas de Saul y Nurse (ASTM C918, 1988; ASTM C1074, 1987), dadas por la siguiente ecuación:

\[R(M) = A + B \log M \]
\[\text{(ecuación 1)} \]

en que:
- \(M = \sum t_i \times (T_i + 10) \)
- \(T_c = \text{temperatura del hormigón (°C)} \)
- \(T_i = \text{tiempo de mantenimiento de la temperatura T_i (hr.)} \)

Para la estimación aproximada de los tiempos equivalentes, a diferentes temperaturas de curado a temprana edad, se han utilizado los factores de Sadgrove dados por ecuación 2:

\[t_c = \frac{\sum_{i=1}^{n} (T_i - T_0)}{(T_c - T_0)} = \sum_{i=1}^{n} R_{T_i} t_i [\text{días a Tc (°C)}] \]
\[\text{(ecuación 2)} \]

en que:
- \(R_{T_i} = \left[\frac{T_i + a}{T_c + a} \right]^2 \)
- \(t_c = \text{período de tiempo equivalente bajo condiciones de curado de referencia} \)
- \(T_c = \text{temperatura de referencia} \)
- \(a = \text{constante que según Sadgrove vale 16 °C} \)
- \(T_0 = \text{temperatura a la cual la resistencia del hormigón permanece cte.} (-10 °C) \)

b) Análisis de Tensiones de Rotura de Testigos de HV y de HN, de similares dimensiones.

La Figura 2 presenta las tensiones de rotura a compresión de testigos de hormigón al vacío y de hormigón normal, sin corrección por temperatura de curado. De acuerdo a lo observado en esta figura, el hormigón al vacío presenta mayor tensión de rotura que el hormigón sin tratamiento.

Un resultado que es interesante destacar y que muestra el gran efecto de la temperatura a temprana edad en la resistencia del hormigón, es el valor de la tensión de rotura del testigo extraído a las 9 horas y ensayado a 27 horas. Como se puede ver en la Figura 2, este testigo presentó una tensión de rotura levemente inferior que la de testigos extraídos a igual edad pero ensayados a 16 horas. Por otra parte, cuando se compara la resistencia de este testigo con la obtenida de testigos ensayados a igual edad, pero extraídos momentos antes de su ensayo, se aprecia que estos últimos tienen resistencias mucho mayores debido a la mayor madurez que han logrado en la estructura. Lo anterior indica que las comparaciones deben realizarse en una escala de madurez del hormigón y no sólo del tiempo.

De la figura se desprende que las tensiones de rotura del hormigón al vacío son entre 32 y 19% superiores que las de hormigón normal y que el cociente es mayor a menor edad del hormigón. El mayor valor a temprana edad se debería en parte a la mayor madurez relativa que tiene el hormigón colocado en la estructura, en comparación con el hormigón de probetas confeccionadas de hormigón fresco.
Figura 2. Comparación de Tensión de Rotura a Compresión de Testigos de Hormigón al Vacío con Testigos de Hormigón Normal de Iguales Dimensiones (75x150 mm)

Lo anterior concuerda con resultados de investigaciones anteriores (Neville, 1996), donde la resistencia del hormigón al vacío es en promedio 30% superior al hormigón normal.

c) Comparación y Análisis de Relaciones Resistencia - Madurez de HV y HN

La Figura 3 muestra el perfil de temperaturas del hormigón al vacío registradas durante las primeras 24 horas luego de la construcción de la losa. Este perfil se obtuvo como el promedio de las temperaturas del hormigón medidas a tres alturas diferentes dentro del espesor de la losa (armadura superior, inferior y entre ambas), no observándose diferencias significativas entre las tres mediciones; además, se registró la temperatura ambiente durante el mismo período de tiempo. El promedio de temperaturas registradas en la losa de HV fue de 34 ºC, mientras que el promedio de la temperatura ambiente fue de 21 ºC, durante las primeras 24 horas.

Para el cálculo de la madurez del hormigón en cualquier instante, es necesario contar con su perfil de temperatura para igual período de tiempo considerado. Debido a que se registró la temperatura sólo durante las primeras 24 horas de edad, se aplicó el siguiente supuesto para el cálculo de la madurez de los testigos de hormigón al vacío:

Figura 3. Evolución de la Temperaturas del hormigón al Vacío y Ambiente
<table>
<thead>
<tr>
<th>HORMIGON</th>
<th>Testigo N°</th>
<th>Edad de extracción</th>
<th>Edad de Ensayo</th>
<th>Madurez (°C/hora)</th>
<th>Tensión de Rotura (Kgf/cm²)</th>
<th>Res. Cúbica Nominal (Kgf/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL VACIO</td>
<td>1</td>
<td>9 horas</td>
<td>16 horas</td>
<td>577,5</td>
<td>144,4</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9 horas</td>
<td>27 horas</td>
<td>918,5</td>
<td>141,2</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>24 horas</td>
<td>27 horas</td>
<td>1148,8</td>
<td>199,6</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>24 horas</td>
<td>27 horas</td>
<td>1148,8</td>
<td>204,6</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7 días</td>
<td>7 días</td>
<td>5783,8</td>
<td>292,0</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7 días</td>
<td>7 días</td>
<td>5783,8</td>
<td>310,1</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>28 días</td>
<td>28 días</td>
<td>21407,8</td>
<td>342,0</td>
<td>382</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>28 días</td>
<td>28 días</td>
<td>21407,8</td>
<td>378,0</td>
<td>417</td>
</tr>
<tr>
<td>NORMAL</td>
<td>1</td>
<td>0</td>
<td>16 horas</td>
<td>480</td>
<td>---</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>27 horas</td>
<td>810</td>
<td>---</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>27 horas</td>
<td>810</td>
<td>---</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>7 días</td>
<td>5040</td>
<td>---</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>7 días</td>
<td>5040</td>
<td>---</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
<td>28 días</td>
<td>20160</td>
<td>---</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0</td>
<td>28 días</td>
<td>20160</td>
<td>---</td>
<td>375</td>
</tr>
</tbody>
</table>

"la temperatura del hormigón alcanza el equilibrio con la temperatura ambiente a la edad de 3 días y una variación lineal de la temperatura del hormigón entre la alcanzada a las 24 horas de edad y la temperatura ambiente promedio a los 3 días después del hormigonado". Para el cálculo de la madurez de las probetas de hormigón normal se supuso que estas siempre se mantuvieron a 20 °C. La Tabla 2 presenta las madureces calculadas de los testigos y probetas a la edad de ensayo, según las suposiciones indicadas en los párrafos anteriores.

La Figura 4 muestra la relación entre la Resistencia Cúbica Nominal y la Madurez a largo plazo, tanto para el Hormigón al Vacío como para el Hormigón Normal. De estos gráficos se obtienen las siguientes ecuaciones de regresión:

HV: \[R_{HV} \text{ (Kgf/cm²)} = 151,071 \cdot \log M - 243,557 \]

Coef. corr. = 0.9727 (ecuación 3)

HN: \[R_{HN} \text{ (Kgf/cm²)} = 157,766 \cdot \log M - 304,957 \]

Coef. corr. = 0.99571 (ecuación 4)

![Figura 4. Relación Resistencia Cúbica Nominal - Madurez a Largo Plazo de Hormigones al Vacío y Normal.](image-url)
Figura 5. Relación Resistencia Cúbica Nominal - Madurez a Corto Plazo (primeros 7 días) de Hormigones al Vacio y Normal

Si se desea comparar las resistencias cúbicas estimadas que alcanzarían los dos tipos de hormigón, a igual madurez, por ejemplo a la madurez del hormigón en condiciones de laboratorio a los 28 días de edad \(M = 28^*24^*20 + 10 = 20160 \) °C*hora), reemplazamos la madurez estimada para las condiciones de laboratorio en las fórmulas anteriores, obteniéndose:

\[
R_{HV} = 407 \text{ Kgf/cm}^2 \\
R_{HN} = 374 \text{ Kgf/cm}^2
\]

De esta forma es posible concluir que el hormigón al vacío, a los 28 días de edad y mantenido a una temperatura constante de 20 °C durante ese período, tendría una resistencia superior al hormigón normal, a igualdad de condiciones (madurez), del orden de 33 Kgf/cm², es decir, 8% superior al hormigón normal.

La Figura 5 muestra la relación entre la Resistencia Cúbica Nominal y la Madurez a corto plazo, tanto para el Hormigón al Vacío como para el Hormigón Normal. De estos gráficos se obtienen las siguientes ecuaciones de regresión:

HV:
\[
HV : R_{HV} (\text{Kgf/cm}^2) = 175,765^*\log M - 318,083 \\
\text{Coef. de Corr.} = 0.9547 \\
\text{(ecuación 5)}
\]

HN:
\[
HN : R_{HN} (\text{Kgf/cm}^2) = 168,407^*\log M - 336,224 \\
\text{Coef. de Corr.} = 0.99216 \\
\text{(ecuación 6)}
\]

Si comparamos las resistencias cúbicas estimadas que alcanzarían los dos tipos de hormigón, a igual madurez, por ejemplo a la madurez del hormigón en condiciones de terreno a las 16 horas de hormigonado \(M = 694,25 \) °C*hora), reemplazamos la madurez estimada para las condiciones in situ en las fórmulas anteriores, obteniéndose:

\[
R_{HV} = 181.4 \text{ Kgf/cm}^2 \\
R_{HN} = 142.3 \text{ Kgf/cm}^2
\]

Estos resultados indican que el hormigón al vacío tendría una resistencia de 39 Kgf/cm² superior al hormigón normal (27% superior respecto al HN) a las 16 horas de hormigonado, si ambos hormigones estuvieran sometidos al mismo ciclo térmico de terreno.

d) Estimación de tiempos de desmolde en función de la temperatura promedio de curado.

Uno de los aspectos constructivos de alto interés para los ingenieros durante la ejecución de una obra, es la estimación de los tiempos mínimos de desmolde y descubre compatibles con la obtención de una resistencia mínima especificada. Esta resistencia debe ser tal que asegure que el descubre a temprana edad no producirá daños en las terminaciones del elemento estructural, que el hormigón soportará solicitudes derivadas al medio ambiente y que no sufrirá rotura ni deflexiones excesivas.

En esta sección y a modo de ejemplo, dado que se tienen pocos resultados como para inferir conclusiones definitivas, se aplica la teoría señalada en la sección “a” para mostrar el potencial que puede tener el conocimiento de la evolución de la resistencia de los hormigones en la predicción de los tiempos mínimos de desmolde y descubre.

La evolución de la resistencia del hormigón depende en forma importante de su temperatura durante las primeras edades y debido a que el presente estudio se realizó en época de verano (altas temperaturas), se han extrapolado los resultados para considerar otras condiciones ambientales que afectan la madurez del hormigón y por ende su resistencia. Se han considerado cuatro condiciones de temperatura promedio de curado para cada tipo de hormigón, asemejando las cuatro estaciones climáticas del
Tabla 3. Ecuaciones de Resistencia Cúbica del Hormigón en función de la Edad t (horas) a una Temperatura Promedio de Curado dada (Corto Plazo)

<table>
<thead>
<tr>
<th>Temperatura de Curado ($^\circ$C)</th>
<th>Hormigón Al Vacío</th>
<th>Hormigón Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>$R_{HV}=175,765^{}$Log$t - 102,200$</td>
<td>$R_{HN}=168,407^{}$Log$t - 109,34$</td>
</tr>
<tr>
<td>20</td>
<td>$R_{HV}=175,765^{}$Log$t - 79,373$</td>
<td>$R_{HN}=168,407^{}$Log$t - 87,466$</td>
</tr>
<tr>
<td>30</td>
<td>$R_{HV}=175,765^{}$Log$t - 41,950$</td>
<td>$R_{HN}=168,407^{}$Log$t - 51,610$</td>
</tr>
<tr>
<td>35</td>
<td>$R_{HV}=175,765^{}$Log$t - 26,198$</td>
<td>$R_{HN}=168,407^{}$Log$t - 36,517$</td>
</tr>
</tbody>
</table>

año. Las 4 condiciones de temperatura promedio de curado consideradas fueron:

- Invierno $T = 15^\circ$C
- Otoño $T = 20^\circ$C
- Primavera $T = 30^\circ$C
- Verano $T = 35^\circ$C (similar a temperatura promedio de 34 $^\circ$C medida en obra)

La estimación de la evolución de la resistencia del hormigón a temprana edad, para diferentes condiciones de temperatura, puede ser realizada por medio de la aplicación de la fórmula de Sadgrove dada por la ecuación 2 y por las relaciones resistencia cónica nominal-tiempo deducidas en las ecuaciones 5 y 6 para hormigón al vacío y normal, respectivamente.

En la Tabla 3 se presentan las ecuaciones que relacionan la Resistencia Cúbica Nominal y el Tiempo Equivalente para distintas temperaturas promedio de curado, tanto para el hormigón al vacío como para el hormigón normal. Estas relaciones de Resistencia Cúbica Nominal del Hormigón y el Tiempo a una determinada temperatura promedio de curado, se grafican en la Figura 6.

De estas ecuaciones o de la Figura 6, dada una resistencia mínima específica para desmoldar o descubrir y estimada la temperatura promedio que tendrá el hormigón en el período de tiempo considerado, es posible despejar el tiempo mínimo de desmoldar requerido para dichas condiciones.

Por otra parte, si se considera por ejemplo un idéntico régimen de temperatura para el hormigón al vacío y para el hormigón normal, y se calcula el promedio de las razones de resistencia entre dichos hormigones para el periodo de tiempo comprendido entre 10 y 48 horas, se concluye que el hormigón al vacío desarrolla mayor resistencia que el hormigón normal. Las relaciones aproximadas calculadas para estas condiciones son:

$$T = 15^\circ$C: \quad R_{HV} = 1,16 \times R_{HN}$$
$$T = 20^\circ$C: \quad R_{HV} = 1,14 \times R_{HN}$$
$$T = 30^\circ$C: \quad R_{HV} = 1,12 \times R_{HN}$$
$$T = 35^\circ$C: \quad R_{HV} = 1,11 \times R_{HN}$$

Cabe hacer notar que el último factor promedio indicado (para temperatura de 35$^\circ$C), es mucho menor que el 27% de mayor resistencia que se estimó tendría el hormigón al vacío sobre el normal (ver sección c), si ambos hormigones tuvieran la misma madurez de terreno a las 16 horas de hormigonado. Este mayor porcentaje indicaría que la relación resistencia - madurez depende, además del tipo de hormigón (tipo de cemento y razón W/C), de la temperatura de curado usada. Resultados de investigaciones anteriores confirman la conclusión en
cuanto a que una temperatura de curado mayor entrega una resistencia mayor, a igualdad de madurez (Videla et al., 1996). Por lo anterior, si se desea comparar ambos tipos de hormigón, a igualdad de condiciones de curado (terreno), los resultados anteriores indicarían que la resistencia cúbica normal del hormigón al vacío es entre 11 y 16% superior a la del hormigón normal.

Por otra parte, es interesante señalar que los resultados calculados parecen indicar que a menor temperatura del hormigón mayor es la razón de resistencia entre hormigón al vacío y normal. Esto podría deberse a que a bajas temperaturas la magnitud de la resistencia es más dependiente de la razón agua/cemento que de la temperatura; por el contrario, a mayores temperaturas ésta tendería a ocultar la ganancia de resistencia del hormigón al vacío sobre el normal por efecto de su menor razón agua/cemento. También puede deberse, como ha sido demostrado en investigaciones anteriores, a que los valores de los coeficientes de madurez tienen una relación inversa con la razón agua/cemento, son altamente sensibles al tipo de cemento utilizado y varían en forma exponencial con la temperatura (Videla y Parada, 1988).

Además, de la Figura 6 se puede ver que la resistencia cúbica nominal del hormigón al vacío a una temperatura de curado de 15 °C sería similar a la resistencia cúbica nominal que alcanzaría el hormigón normal a 20°C de temperatura de curado.

Por último, si se especifica por ejemplo una resistencia cúbica mínima de desmolde de 150 Kgf/cm², se puede ver que el hormigón al vacío analizado en este caso en particular, alcanzaría dicha resistencia aproximadamente a las 10 horas de hormigonado.

6. CONCLUSIONES Y RECOMENDACIONES

1. Los resultados obtenidos de los ensayos indicarían que el hormigón al vacío y normal analizados, a las 16 horas y 28 días de hormigonado y en sus condiciones características de curado (terreno y laboratorio, respectivamente), presentarían las siguientes propiedades:

 Se debe hacer notar que los valores señalados para el hormigón al vacío son valores medios y representativos del hormigón en el elemento estructural.

 Como las especificaciones de calidad del hormigón se expresan en términos de resistencia característica en base a resultados de ensayos bajo condiciones de temperatura y humedad normalizados, los criterios para definir la resistencia de desmolde deberían considerar estas diferencias entre especificación y terreno.

 Según Harrison (1981), la resistencia del hormigón necesaria para desmolde o descimbre debería satisfacer los siguientes criterios:

 • Resistencia media cúbica requerida medida en cubos curados en terreno al lado del elemento estructural = 1,25 * Resistencia cúbica característica especificada para desmolde o descimbre.
 • Resistencia media cúbica requerida medida en cubos curados en terreno a cualquier madurez = 1,88 * Resistencia cúbica característica en terreno del hormigón de la estructura a igual madurez.

 Por otra parte, la norma inglesa CP110 (1972) indica que la resistencia media del hormigón para desmolde debe ser dos veces la tensión a la que estaría sometido el hormigón al momento del desmolde.

 Para el análisis del hormigón al vacío se debe recordar además que la situación es aún más complicada ya que son diferentes hormigones el de la estructura (hormigón al vacío) y el de las probetas (hormigón normal), por las diferentes razones W/C, condiciones de curado y temperatura de curado.

2. Se concluye que en general los hormigones al vacío presentan mejores propiedades que el hormigón normal. En efecto, los resultados de los ensayos a compresión de testigos de hormigón normal y testigos de hormigón al vacío, arrojan que éstos últimos presentan mayor tensión de rotura que los hormigones sin tratamiento (19% superior) a 28 días de edad, pero a distinta condición de curado.

 Sin embargo, los porcentajes de mejora de estas propiedades son menores que los reportados por la literatura especializada. Una explicación a este fenómeno puede encontrarse en la mayor finura (4000 cm²/gr) que presentan los cementos Portland Puzolánicos respecto a cementos Portland (3500 cm²/gr), lo que disminuiría la efectividad del proceso de vacío.
3. A igual condición de curado (temperatura media), la resistencia cúbica nominal del hormigón al vacío sería entre 11% y 16% superior a la del hormigón normal, a corto plazo (16 horas), para temperatura de curado de 15 y 35 °C, respectivamente. Tales diferencias mencionadas son mayores a menor temperatura de curado y se deberían a menor porosidad del hormigón al vacío respecto al normal (por menor razón W/C y mayor densidad). A largo plazo (28 días), la resistencia nominal del hormigón al vacío sería 8,8% superior al hormigón a igualdad de madurez.

4. Al comparar las resistencias cúbicas estimadas que alcanzarían los dos tipos de hormigón, a igual madurez en condiciones de laboratorio a los 28 días de edad, vemos que el hormigón al vacío tendría una resistencia 8,8% superior al hormigón normal.

Por otro lado, al comparar las resistencias cúbicas estimadas que alcanzarían los dos tipos de hormigón, a igual madurez, pero esta vez en condiciones de terreno a las 16 horas de hormigonado, vemos que el hormigón al vacío tendría una resistencia 27% superior respecto al hormigón normal.

5. Al considerar un idéntico régimen de temperatura para el hormigón al vacío como para el hormigón normal para las diferentes estaciones del año, y si se calcula el promedio de las razones de resistencia entre dichos hormigones para el período de tiempo comprendido entre 10 y 48 horas, se concluye que el hormigón al vacío desarrolla mayor resistencia que el hormigón normal. Se debe destacar que factor promedio de 11% indicado para la estación de verano (temperatura 35 °C), es mucho menor que el 27% de mayor resistencia que se estimó tendría el hormigón al vacío, si ambos hormigones tuvieran la misma madurez de terreno a las 16 horas de hormigonado. Este mayor porcentaje indicaría que la relación resistencia - madurez depende, además del tipo de hormigón (tipo de cemento y razón W/C), de la temperatura de curado usada.

Por lo anterior, si se desea comparar ambos tipos de hormigón, a igualdad de condiciones de curado (terreno), los resultados anteriores indicarían que la resistencia cúbica nominal del hormigón al vacío es entre 11 y 16% superior que la del hormigón normal.

Por otro lado, los autores establecen las siguientes recomendaciones referentes a futuros desarrollos necesarios:

1. La determinación de los tiempos mínimos de desmolde y descubre es un proceso de dos pasos. El primero es determinar los criterios apropiados de tiempo de desmolde y descubre y el segundo determinar cuándo la estructura ha satisfecho estos criterios. Para desmolde y descubre de vigas y lasos, el colapso y la deflexión excesiva son los principales criterios, mientras que para desmolde de los lados de los elementos deben ser considerados el congelamiento y el daño mecánico. Estos límites pueden ser satisfechos alcanzando ciertas resistencias del hormigón antes del descubre. Harrison (1981) explica cómo se deducen estas relaciones y presenta su aplicación para hormigones normales y condiciones en Inglaterra. Se recomienda, por lo tanto, estudiar los tiempos mínimos de desmolde de acuerdo a las condiciones propias de nuestro país (materiales, técnicas constructivas, condiciones ambientales) y de la obra en particular.

2. Se sugiere centrar la atención en definir o caracterizar en forma más precisa las propiedades resistentes y módulo de elasticidad del hormigón (primeros 7 días) y las relaciones resistencia - madurez y resistencia - tiempo para diferentes temperaturas de curado.

3. Es necesario definir las relaciones entre resistencia característica de proyecto y resistencia del hormigón en obra. Entre otros se requiere correlacionar estas propiedades en función de un procedimiento de ensayo a especificar, tomando en consideración la diferencia entre el hormigón antes y después del tratamiento de vacío y de un procedimiento para verificar la efectividad y uniformidad del tratamiento.

4. Se recomienda estudiar e implementar en terreno procedimientos de monitoreo (ej.: medición de temperatura o madurez, uso de martillo Schmitt, etc.), que permitan determinar cuando una estructura ha satisfecho los criterios especificados para descubre.
REFERENCIAS

AMERICAN SOCIETY OF TESTING AND MATERIALS, ASTM C 918-88: Standard Test Method for Developing Early-Age Compression Test values and Projecting later-Age Strengths
HARRISON, T.A., Tables of minimum striking times for soffit and vertical formwork, 1981.
WENANDER, H., Vacuum dewatering is back, Concrete Construction, February, 1975.

AGRADECIMIENTOS

Los autores agradecen a la empresa constructora ICOM Ltda. por el apoyo y financiamiento de la presente investigación y al Laboratorio de Resistencia de Materiales RESMAT de la Pontificia Universidad Católica de Chile, cuyo apoyo técnico fue fundamental para el logro del proyecto.

Carlos Videla C.
Profesor, Departamento Ingeniería y Gestión de la Construcción.
Jefe Laboratorios RESMAT.
e-mail: cvidela@ing.puc.cl

Carlos Aguilar R.
Estudiante Doctorado en Ciencias de la Ingeniería
Pontificia Universidad Católica de Chile